新闻标题:连云港高中数学名师辅导
连云港高中数学是连云港高中数学培训机构的重点专业,连云港市知名的高中数学培训机构,教育培训知名品牌,连云港高中数学培训机构师资力量雄厚,全国各大城市均设有分校,学校欢迎你的加入。
1、专业的教师团队,掌握前沿的教学方法 2、教学经验丰富,善于激发学生的潜能 3、善于带动学员融入情景体验式课堂
连云港高中数学培训机构分布连云港市连云区,新浦区,海州区,赣榆县,东海县,灌云县,灌南县等地,是连云港市极具影响力的高中数学培训机构。
设疑式导入法是根据中学生追根求源的心理特点,给学生创设一些疑问和矛盾,引起思考,利用与学生已有观念或知识造成的认知冲突来导入新课的方法。在教学实践中,设疑导入法,就是让教材的知识点以问题的形式呈现在学生的面前,让学生在寻求和探索解决问题的思维活动中,掌握知识、发展智力、培养技能,进而培养学生自己发现问题解决问题的能力。
新课标指出:教师应该激发学生积极性,帮助他们在自主、探究和合作交流过程中真正理解和掌握数学知识与技能。因此,教师要面向学生,给学生探究发现的机会,不仅让学生动口、动脑,而且让学生动手操作,使他们在“玩”中发展思维。
重点检索的要点:题目
孟浩然 ( )眠不( )晓,处处( )啼( )。
( )来风雨( ),( )落( )多少。
不能。因为:
(1)与人们认识事物的(由浅入深、由表入里、由现象到本质)规律不一致。
(2)该词与上文是一一对应的关系。
(3)这些词是递进关系,环环相扣,不能互换。
(六)段意的概括归纳
体会按照一定顺序说明事物的方法
借景抒情、寓情于景、情景交融都是诗人把要表达的感情通过景物表达出来。“借景抒情”表达感情比较直接,读完诗歌后的感受是见“情”不见“景”;“寓情 于景”、“情景交融”。表达感情时正面不着一字,读完诗歌后的感受是见“景”不见“情”,但是仔细分析后却发现诗人的感情全部寓于眼前的自然景色之中,一 切景语皆情语。
(三)描写的角度
语文不等于考试语文,考试语文,其实很简单
探索性表现在能洞察所研究的对象的每一个细节及其相互关系,探寻问题的内在实质,由结论探索不明确的条件或由条件探索不具体的结论,教学中教师要正确引导学生通过观察、对此、联想、概括、推理、判断等一系列探索思维过程,对于学生在探索过程中,时不时的出现的问题应及时给学生耐心指导如何根据条件或结论进行观察、对比等正确的探索途径,使学生渐渐地形成一套符合自己的解决问题的能力,从而有效地培养学生的发散思维能力以发现问题、分析问题、解决问题的能力。
尺规作图是建立在几何推理上的一种作图方法,每一种基本作图法都可以用几何论证其正确性。尺规作图有其严密的逻辑性,在应用过程中,除了培养学生合作探究、动手操作能力外,对学生几何思维的训练也有着非常大的促进作用,因为尺规作图比纯粹的几何证明题具有更高的推理要求,它要求在操作的设计过程中先运用合情推理发现过程与结论,再运用逻辑推理进行证明,构成一个完整的思维程序,从而促进思维功能的发展。
例如,教学“圆柱体的体积”时,在学生已经掌握圆柱的体积计算方法后,利用原例题,变原有条件为“把一个直径20厘米的圆柱,沿底面直径从上到下分成若干等份,然后拼接成一个和它体积相等的长方体,这个长方体的表面积比原来的圆柱表面积增加7平方厘米,长方体的体积是多少?”教师先为学生提供了一个真实的经验情境。学生通过观察会发现,圆柱变形后,新形体和原形体等积;新形体的长恰好是圆柱底面周长的1/2,新增表面积7平方厘米正好是圆柱体变形后所得长方体左右面面积之和。如此分析探究之后,学生很快会得出这个长方体(即变形前圆柱体)体积为“长方体左(右)面积×长方体的长”。此时学生的思维方向很明确,且有足够的思维空间。因为长方体左(右)面积=圆柱的底面半径(r)×圆柱的高(h)=hr;长方体的长=1/2圆周长=πr。所以,圆柱体变形后得到的新的长方体的体积为“长方体左(右)面积×1/2圆周长”,即“hr·πr”,整理后得V=πr2·h。上述思维活动加深了学生对圆柱体计算公式推导过程的理解,锻炼了学生思维的独立性与敏捷性,创造性地应用已有知识解决了新问题。
语文:仔细斟酌四点
注重概念的引入方法
(1)从学生已有生活经验、熟知的具体事例中进行引入。如引出“圆”的概念之前,可让同学们联想生活中见过的年轮、太阳、五环旗、圆状跑道等实物的形状,再让同学用圆规在纸上画圆,也可用准备好的定长的线绳,将一端固定,而另一端带有铅笔并绕固定端旋转一周,从而引导同学们自己发现圆的形成过程,进而总结出圆的特点:圆周上任意一点到圆心的距离相等,从而猜想归纳出“圆”的概念。
(2)在复习旧概念的基础上引入新概念。概念教学的起步是在已有的认知结构的基础上进行的。因此在教学新概念前,如果能对学生认知结构中原有的适当概念做一些类比,引入新概念,则有利于促进新概念的形成。例如,在教学一元二次方程时,就可以先复习一元一次方程,因为一元一次方程是基础,一元二次方程是延伸,复习一元一次方程是合乎知识逻辑的。通过比较得出两种方程都是只含有一个未知数的整式方程,差异仅在于未知数的最高次数不同,由此很容易建立起“一元二次方程”的概念。深入剖析,揭示概念的本质
是,重新修建岳阳楼,扩大了它原来的规模。
虽说是平方差公式,但是哪一个数的平方减去哪一个数的平方,学生并没有深究,他们从公式的表面来看,好像是两个二项式中的第一个数的平方减去第二个数的平方。例如这道题很多学生就是这样做的:(xy)(xy)=x2 y2.通过这道题的练习,暴露出了学生对公式的本质特征并没有掌握。带着问题,引导学生研究公式(a+b(ab)=a2b2后发现,公式中前后有一个相同项,又有一个互为相反数的项,它的结果实际等于相同项的平方,减去互为相反数的项的平方。学生理解了公式的本质特征后,做这类题就得心应手了。学生也知道了凡是符合了前后有一个相同项,又有一个互为相反数的项的两个二项式的积就可应用平方差公式计算,否则就不就不能应用平方差公式。这样学生做能否用平方差公式计算的辨析题,只要稍加观察,就可选出正确的答案。
因为在传统的数学课堂上,学生长期接受教师的灌输式教育,学生很难有机会进行自主学习,这就导致学生的学习主动性受到抑制。实施小组学习之后,学生有更多的机会进行交流与讨论,他们的学习主动性也不会受到抑制,所以学生对数学学习产生了浓厚的兴趣。比如,在讲解二元一次方程组的时候笔者就组织学生进行小组讨论,让学生互相讨论并分享自己的学习成果。二元一次方程组知识与一元一次方程组知识有着一定的联系,因此学生在自主学习的时候已经对这部分知识有了一定的理解,当笔者组织学生进行小组学习的时候学生进行了激烈的讨论,每一个人都积极阐述自己的观点,他们的学习兴趣得到了很好地激发。
连云港高中数学培训机构成就你的梦想之旅。学高中数学就来连云港高中数学培训机构
培训咨询电话:点击左侧离线宝免费咨询